BME's Karmella Haynes is leading a National Science Foundation project studying the mysteries and mechanisms of non-coding RNA.

Karmella Haynes wants to shine some light on the “dark matter” of the genome, and the National Science Foundation (NSF) is helping her flip the switch.

Haynes, assistant professor in the Wallace H. Coulter Department of Biomedical Engineering at Georgia Tech and Emory University, is leading a team of multi-disciplinary investigators who were awarded a four-year, $2.1 million grant from NSF to explore this dark matter and illuminate how the genome controls living systems in all their diversity and complexity.

It’s large space to explore. Only two percent of the human genome is known to provide instructions to build proteins, a process essential to higher functioning life. This leaves 98 percent of the genome as a biological frontier known as dark matter – these segments do not encode for protein, like the other two percent.

“A lot of progress has been made in studying this part of the genome, but what we don’t know yet can be very useful,” said Haynes, whose lab works on the front line of synthetic biology, and is typically dedicated to protein engineering, including the investigation and design of chromatin-based systems for controlling gene expression in cancer and other cells.

Read the full story on the Wallace H. Coulter Department of Biomedical Engineering website.